Fast stochastic optimization for articulated structure tracking

作者:

Highlights:

摘要

Recently, an optimization approach for fast visual tracking of articulated structures based on stochastic meta-descent (SMD) [7] has been presented. SMD is a gradient descent with local step size adaptation that combines rapid convergence with excellent scalability. Stochastic sampling helps to avoid local minima in the optimization process. We have extended the SMD algorithm with new features for fast and accurate tracking by adapting the different step sizes between as well as within video frames and by introducing a robust cost function, which incorporates both depths and surface orientations. The advantages of the resulting tracker over state-of-the-art methods are supported through 3D hand tracking experiments. A realistic deformable hand model reinforces the accuracy of our tracker.

论文关键词:Stochastic meta-descent,Hand tracking,Deformable hand model

论文评审过程:Received 15 October 2004, Revised 5 August 2005, Accepted 11 October 2005, Available online 18 April 2006.

论文官网地址:https://doi.org/10.1016/j.imavis.2005.10.009