Morphological segmentation on learned boundaries
作者:
Highlights:
•
摘要
Colour information is usually not enough to segment natural complex scenes. Texture contains relevant information that segmentation approaches should consider. Martin et al. [Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5) (2004) 530–549] proposed a particularly interesting colour-texture gradient. This gradient is not suitable for Watershed-based approaches because it contains gaps. In this paper, we propose a method based on the distance function to fill these gaps. Then, two hierarchical Watershed-based approaches, the Watershed using volume extinction values and the Waterfall, are used to segment natural complex scenes.Resulting segmentations are thoroughly evaluated and compared to segmentations produced by the Normalised Cuts algorithm using the Berkeley segmentation dataset and benchmark. Evaluations based on both the area overlap and boundary agreement with manual segmentations are performed.
论文关键词:Image segmentation,Watershed,Waterfall,Normalised cuts,Segmentation evaluation,Volume extinction values
论文评审过程:Received 13 November 2006, Revised 16 June 2008, Accepted 30 June 2008, Available online 5 July 2008.
论文官网地址:https://doi.org/10.1016/j.imavis.2008.06.012