Context-based embedded image compression using binary wavelet transform

作者:

Highlights:

摘要

Binary wavelet transform (BWT) has several distinct advantages over the real wavelet transform (RWT), such as the conservation of alphabet size of wavelet coefficients, no quantization introduced during the transform and the simple Boolean operations involved. Thus, less coding passes are engaged and no sign bits are required in the compression of transformed coefficients. However, the use of BWT for the embedded grayscale image compression is not well established. This paper proposes a novel Context-based Binary Wavelet Transform Coding approach (CBWTC) that combines the BWT with a high-order context-based arithmetic coding scheme to embedded compression of grayscale images. In our CBWTC algorithm, BWT is applied to decorrelate the linear correlations among image coefficients without expansion of the alphabet size of symbols. In order to match up with the CBWTC algorithm, we employ the gray code representation (GCR) to remove the statistical dependencies among bi-level bitplane images and develop a combined arithmetic coding scheme. In the proposed combined arithmetic coding scheme, three highpass BWT coefficients at the same location are combined to form an octave symbol and then encoded with a ternary arithmetic coder. In this way, the compression performance of our CBWTC algorithm is improved in that it not only alleviate the degradation of predictability caused by the BWT, but also eliminate the correlation of BWT coefficients in the same level subbands. The conditional context of the CBWTC is properly modeled by exploiting the characteristics of the BWT as well as taking advantages of non-causal adaptive context modeling. Experimental results show that the average coding performance of the CBWTC is superior to that of the state-of-the-art grayscale image coders, and always outperforms the JBIG2 algorithm and other BWT-based binary coding technique for a set of test images with different characteristics and resolutions.

论文关键词:Binary wavelet transform,Context modeling,Embedded image compression

论文评审过程:Received 15 March 2009, Revised 13 November 2009, Accepted 30 November 2009, Available online 3 December 2009.

论文官网地址:https://doi.org/10.1016/j.imavis.2009.11.013