Feature selection for position estimation using an omnidirectional camera

作者:

Highlights:

摘要

This paper considers visual feature selection to implement position estimation using an omnidirectional camera. The localization is based on a maximum likelihood estimation (MLE) with a map from optimally selected visual features using Gaussian process (GP) regression. In particular, the collection of selected features over a surveillance region is modeled by a multivariate GP with unknown hyperparameters. The hyperparameters are identified through the learning process by an MLE, which are used for prediction in an empirical Bayes fashion. To select features, we apply a backward sequential elimination technique in order to improve the quality of the position estimation with compressed features for efficient localization. The excellent results of the proposed algorithm are illustrated by the experimental studies with different visual features under both indoor and outdoor real-world scenarios.

论文关键词:Vision-based localization,Appearance-based localization,Feature selection,Gaussian process regression,Hyperparameter estimation,Empirical Bayes methods

论文评审过程:Received 26 September 2013, Revised 19 September 2014, Accepted 1 April 2015, Available online 8 May 2015, Version of Record 23 May 2015.

论文官网地址:https://doi.org/10.1016/j.imavis.2015.04.002