Flexible 3D models from uncalibrated cameras

作者:

Highlights:

摘要

We describe how to build statistically-based flexible models of the 3D structure of variable objects, given a training set of uncalibrated images. We assume that for each example object there are two labelled images taken from different viewpoints. From each image pair a 3D structure can be reconstructed, up to either an affine or projective transformation, depending on which camera model is used. The reconstructions are aligned by choosing the transformations which minimise the distances between matched points across the training set. A statistical analysis results in an estimate of the mean structure of the training examples and a compact parameterised model of the variability in shape across the training set. Experiments have been performed using pinhole and affine camera models. Results are presented for both synthetic data and real images.

论文关键词:Shape and object representation,Uncalibrated cameras,Projective geometry,Learning in computer vision

论文评审过程:Available online 20 February 1999.

论文官网地址:https://doi.org/10.1016/0262-8856(96)01099-2