Workload management: a technology perspective with respect to self-* characteristics
作者:Abdul Mateen, Basit Raza, Muhammad Sher, M. M. Awais, Norwatti Mustapha
摘要
Rapid growth in data, maximum functionality requirements and changing behavior in the database workload tends the workload management to be more complex. Organizations have complex type of workloads that are very difficult to manage by humans and even in some cases this management becomes impossible. Human experts take long time to get sufficient experience so that they can manage the workload efficiently. The versatility in workload due to huge data size and user requirements leads us towards the new challenges. One of the challenges is the identification of the problematic queries and the decision about these, i.e. whether to continue their execution or stop. The other challenge is how to characterize the workload, as the tasks such as configuration, prediction and adoption are fully dependent on the workload characterization. Correct and timely characterization leads managing the workload in an efficient manner and vice versa. In this scenario, our objective is to produce a workload management strategy or framework that is fully adoptive. The paper provides a summary of the structure and achievements of the database tools that exhibit Autonomic Computing or self-* characteristics in workload management. We have categorized the database workload tools to these self-* characteristics and identified their limitations. Finally the paper presents the research done in the database workload management tools with respect to the workload type and Autonomic Computing.
论文关键词:Autonomic Computing, Workload Management, Optimization, Configuration, Inspection, Prediction, Organization, Adoption
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10462-012-9320-8