Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting

作者:M. Madhiarasan, S. N. Deepa

摘要

In this paper methodologies are proposed to estimate the number of hidden neurons that are to be placed numbers in the hidden layer of artificial neural networks (ANN) and certain new criteria are evolved for fixing this hidden neuron in multilayer perceptron neural networks. On the computation of the number of hidden neurons, the developed neural network model is applied for wind speed forecasting application. There is a possibility of over fitting or under fitting occurrence due to the random selection of hidden neurons in ANN model and this is addressed in this paper. Contribution is done in developing various 151 different criteria and the evolved criteria are tested for their validity employing various statistical error means. Simulation results prove that the proposed methodology minimized the computational error and enhanced the prediction accuracy. Convergence theorem is employed over the developed criterion to validate its applicability for fixing the number of hidden neurons. To evaluate the effectiveness of the proposed approach simulations were carried out on collected real-time wind data. Simulated results confirm that with minimum errors the presented approach can be utilized for wind speed forecasting. Comparative analysis has been performed for the estimation of the number of hidden neurons in multilayer perceptron neural networks. The presented approach is compact, enhances the accuracy rate with reduced error and faster convergence.

论文关键词:Hidden neurons, Multilayer perceptron networks, Wind speed forecasting, Convergence theorem

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10462-016-9506-6