Empirical analysis of five nature-inspired algorithms on real parameter optimization problems
作者:Parul Agarwal, Shikha Mehta
摘要
In the past few years nature-inspired algorithms are seen as potential tools to solve computationally hard problems. Tremendous success of these algorithms in providing near optimal solutions has inspired the researchers to develop new algorithms. However, very limited efforts have been made to identify the best algorithms for diverse classes of problems. This work attempts to assess the efficacy of five contemporary nature-inspired algorithms i.e. bat algorithm (BA), artificial bee colony algorithm (ABC), cuckoo search algorithm (CS), firefly algorithm (FA) and flower pollination algorithm (FPA). The work evaluates the performance of these algorithms on CEC2014 30 benchmark functions which include unimodal, multimodal, hybrid and composite problems over 10, 30, 50 and 100 dimensions. Control parameters of all algorithms are self-adapted so as to obtain best results over benchmark functions. The algorithms have been evaluated along three perspectives (a) statistical significance using Wilcoxon rank sum test (b) computational time complexity (c) convergence rate of algorithms. Experimental results and analysis revealed that ABC algorithm perform best for majority of the problems on high dimension, while on small dimension, CS is the best choice. FPA attain the next best position follow by BA and FA for all kinds of functions. Self adaptation of above algorithms also revealed the best values of input parameters for various algorithms. This study may aid experts and scientists of computational intelligence to solve intricate optimization problems.
论文关键词:Artificial bee colony algorithm, Computational time complexity, Wilcoxon rank sum test, Convergence rate
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10462-017-9547-5