Exploring the influential reviewer, review and product determinants for review helpfulness
作者:M. S. I. Malik, Ayyaz Hussain
摘要
Helpfulness of online reviews is a multi-faceted concept. The reviews are usually ranked on the basis of perceived helpful votes and aid in making purchase decisions for online customers. This study extends the prior work done for review helpfulness by considering not only the influential characteristics of reviews but also incorporates influential indicators of reviewer and product category. Influential factor based new features (product, reviewer and review) are proposed to predict the helpfulness of online reviews by using five ML methods. The experimental analysis on a real-life review dataset shows that the hybrid set of proposed features deliver the best predictive performance. In addition, the reviewer and the review category features introduced in this research exhibit better predictive performance as a standalone model. Findings show that reviews which have large number of comments, large values of sentiment and polarity scores receive more helpful votes. The reviewer activity length and recency are statistically significant predictors for helpfulness prediction. In addition, number of question answered, ratio of positive reviews and average rating per review are also significant variables of product type. The findings of this study highlight the number of implications for research and provide new insights to retailers for efficient ranking and organization of consumer reviews for online users.
论文关键词:Review helpfulness, Machine learning, Neural networks, Reviewer characteristics, Sentiment analysis
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10462-018-9662-y