Systematic review of spell-checkers for highly inflectional languages

作者:Shashank Singh, Shailendra Singh

摘要

Performance of any word processor, search engine, social media relies heavily on the spell-checkers, grammar checkers etc. Spell-checkers are the language tools which break down the text to check the spelling errors. It cautions the user if there is any unintentional misspelling occurred in the text. In the area of spell-checking, we still lack an exhaustive study that covers aspects like strengths, limitations, handled errors, performance along with the evaluation parameters. In literature, spell-checkers for different languages are available and each one possesses similar characteristics however, have a different design. This study follows the guidelines of systematic literature review and applies it to the field of spell-checking. The steps of the systematic review are employed on 130 selected articles published in leading journals, premier conferences and workshops in the field of spell-checking of different inflectional languages. These steps include framing of the research questions, selection of research articles, inclusion/exclusion criteria and the extraction of the relevant information from the selected research articles. The literature about spell-checking is divided into key sub-areas according to the languages. Each sub-area is then described based on the technique being used. In this study, various articles are analyzed on certain criteria to reach the conclusion. This article suggests how the techniques from the other domains like morphology, part-of-speech, chunking, stemming, hash-table etc. can be used in development of spell-checkers. It also highlights the major challenges faced by researchers along with the future area of research in the field of spell-checking.

论文关键词:Spelling, Spell-check, Non-word errors, Real-word errors, Dictionary lookup, Edit-distance, Recurrent neural network (RNN)

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10462-019-09787-4