Design and applications of an advanced hybrid meta-heuristic algorithm for optimization problems

作者:Raghav Prasad Parouha, Pooja Verma

摘要

This paper designed an advanced hybrid algorithm (haDEPSO) to solve the optimization problems, based on multi-population approach. It integrated with suggested advanced DE (aDE) and PSO (aPSO). Where in aDE a novel mutation strategy and crossover probability along with the slightly changed selection scheme are introduced, to avoid premature convergence. And aPSO consists of the novel gradually varying inertia weight and acceleration coefficient parameters, to escape stagnation. So, convergence characteristic of aDE and aPSO provides different approximation to the solution space. Thus, haDEPSO achieve better solutions due to integrating merits of aDE and aPSO. Also in haDEPSO individual population is merged with other in a pre-defined manner, to balance between global and local search capability. The algorithms efficiency is verified through 23 basic, 30 CEC 2014 and 30 CEC 2017 test suite and comparing the results with various state-of-the-art algorithms. The numerical, statistical and graphical analysis shows the effectiveness of these algorithms in terms of accuracy and convergence speed. Finally, three real world problems have been solved to confirm problem-solving capability of proposed algorithms. All these analyses confirm the superiority of the proposed algorithms over the compared algorithms.

论文关键词:Optimization, Meta-heuristic algorithm, Particle swarm optimization, Differential evolution, Hybrid algorithm

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10462-021-09962-6