Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): a detailed review with direction for future research

作者:Toufique A. Soomro, Lihong Zheng, Ahmed J. Afifi, Ahmed Ali, Ming Yin, Junbin Gao

摘要

Since early 2020, the whole world has been facing the deadly and highly contagious disease named coronavirus disease (COVID-19) and the World Health Organization declared the pandemic on 11 March 2020. Over 23 million positive cases of COVID-19 have been reported till late August 2020. Medical images such as chest X-rays and Computed Tomography scans are becoming one of the main leading clinical diagnosis tools in fighting against COVID-19, underpinned by Artificial Intelligence based techniques, resulting in rapid decision-making in saving lives. This article provides an extensive review of AI-based methods to assist medical practitioners with comprehensive knowledge of the efficient AI-based methods for efficient COVID-19 diagnosis. Nearly all the reported methods so far along with their pros and cons as well as recommendations for improvements are discussed, including image acquisition, segmentation, classification, and follow-up diagnosis phases developed between 2019 and 2020. AI and machine learning technologies have boosted the accuracy of Covid-19 diagnosis, and most of the widely used deep learning methods have been implemented and worked well with a small amount of data for COVID-19 diagnosis. This review presents a detailed mythological analysis for the evaluation of AI-based methods used in the process of detecting COVID-19 from medical images. However, due to the quick outbreak of Covid-19, there are not many ground-truth datasets available for the communities. It is necessary to combine clinical experts’ observations and information from images to have a reliable and efficient COVID-19 diagnosis. This paper suggests that future research may focus on multi-modality based models as well as how to select the best model architecture where AI can introduce more intelligence to medical systems to capture the characteristics of diseases by learning from multi-modality data to obtain reliable results for COVID-19 diagnosis for timely treatment .

论文关键词:Coronavirus (COVID-19), Artificial intelligence(AI), Medical imaging, Segmentation, Classification, Deep learning

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10462-021-09985-z