Continuous distance-based skyline queries in road networks
作者:
Highlights:
•
摘要
In recent years, the research community has introduced various methods for processing skyline queries in road networks. A skyline query retrieves the skyline points that are not dominated by others in terms of static and dynamic attributes (i.e., the road distance). This paper addresses the issue of efficiently processing continuous skyline queries in road networks. Two novel and important distance-based skyline queries are presented, namely, the continuous dε-skyline query (Cdε-SQ) and the continuous k nearest neighbor-skyline query (Cknn-SQ). A grid index is first designed to effectively manage the information of data objects and then two algorithms are proposed, the Cdε-SQ algorithm and the Cdε-SQ+ algorithm, which are combined with the grid index to answer the Cdε-SQ. Similarly, the Cknn-SQ algorithm and the Cknn-SQ+ algorithm are developed to efficiently process the Cknn-SQ. Extensive experiments using real road network datasets demonstrate the effectiveness and the efficiency of the proposed algorithms.
论文关键词:Skyline query,Continuous skyline query,Continuous dε-skyline query,Continuous k nearest neighbor-skyline query
论文评审过程:Received 1 April 2011, Revised 19 January 2012, Accepted 17 February 2012, Available online 3 March 2012.
论文官网地址:https://doi.org/10.1016/j.is.2012.02.003