A case study of distributed information retrieval architectures to index one terabyte of text

作者:

Highlights:

摘要

The increasing number of documents to be indexed in many environments (Web, intranets, digital libraries) and the limitations of a single centralised index (lack of scalability, server overloading and failures), lead to the use of distributed information retrieval systems to efficiently search and locate the desired information. This work is a case study of different architectures for a distributed information retrieval system, in order to provide a guide to approximate the optimal architecture with a specific set of resources. We analyse the effectiveness of a distributed, replicated and clustered architecture simulating a variable number of workstations (from 1 up to 4096). A collection of approximately 94 million documents and 1 terabyte (TB) of text is used to test the performance of the different architectures. In a purely distributed information retrieval system, the brokers become the bottleneck due to the high number of local answer sets to be sorted. In a replicated system, the network is the bottleneck due to the high number of query servers and the continuous data interchange with the brokers. Finally, we demonstrate that a clustered system will outperform a replicated system if a high number of query servers is used, essentially due to the reduction of the network load. However a change in the distribution of the users’ queries could reduce the performance of a clustered system.

论文关键词:Distributed information retrieval,Performance,Simulation

论文评审过程:Received 14 November 2003, Accepted 3 May 2004, Available online 28 July 2004.

论文官网地址:https://doi.org/10.1016/j.ipm.2004.05.002