Supervised categorization of JavaScriptTM using program analysis features
作者:
Highlights:
•
摘要
Web pages often embed scripts for a variety of purposes, including advertising and dynamic interaction. Understanding embedded scripts and their purpose can often help to interpret or provide crucial information about the web page. We have developed a functionality-based categorization of JavaScript, the most widely used web page scripting language. We then view understanding embedded scripts as a text categorization problem. We show how traditional information retrieval methods can be augmented with the features distilled from the domain knowledge of JavaScript and software analysis to improve classification performance. We perform experiments on the standard WT10G web page corpus, and show that our techniques eliminate over 50% of errors over a standard text classification baseline.
论文关键词:Information retrieval,Machine learning,JavaScript,ECMAScript,Program comprehension,Source clone,Program pattern,Software metrics,Program classification,Automated code classification
论文评审过程:Received 16 May 2006, Accepted 25 July 2006, Available online 18 October 2006.
论文官网地址:https://doi.org/10.1016/j.ipm.2006.07.019