Author identification: Using text sampling to handle the class imbalance problem

作者:

Highlights:

摘要

Authorship analysis of electronic texts assists digital forensics and anti-terror investigation. Author identification can be seen as a single-label multi-class text categorization problem. Very often, there are extremely few training texts at least for some of the candidate authors or there is a significant variation in the text-length among the available training texts of the candidate authors. Moreover, in this task usually there is no similarity between the distribution of training and test texts over the classes, that is, a basic assumption of inductive learning does not apply. In this paper, we present methods to handle imbalanced multi-class textual datasets. The main idea is to segment the training texts into text samples according to the size of the class, thus producing a fairer classification model. Hence, minority classes can be segmented into many short samples and majority classes into less and longer samples. We explore text sampling methods in order to construct a training set according to a desirable distribution over the classes. Essentially, by text sampling we provide new synthetic data that artificially increase the training size of a class. Based on two text corpora of two languages, namely, newswire stories in English and newspaper reportage in Arabic, we present a series of authorship identification experiments on various multi-class imbalanced cases that reveal the properties of the presented methods.

论文关键词:Author identification,Class imbalance,Text categorization

论文评审过程:Received 28 February 2007, Revised 21 May 2007, Accepted 26 May 2007, Available online 9 July 2007.

论文官网地址:https://doi.org/10.1016/j.ipm.2007.05.012