Enhancing Aspect-Based Sentiment Analysis of Arabic Hotels’ reviews using morphological, syntactic and semantic features
作者:
Highlights:
•
摘要
This research presents an enhanced approach for Aspect-Based Sentiment Analysis (ABSA) of Hotels’ Arabic reviews using supervised machine learning. The proposed approach employs a state-of-the-art research of training a set of classifiers with morphological, syntactic, and semantic features to address the research tasks namely: (a) T1:Aspect Category Identification, (b) T2:Opinion Target Expression (OTE) Extraction, and (c) T3: Sentiment Polarity Identification. Employed classifiers include Naïve Bayes, Bayes Networks, Decision Tree, K-Nearest Neighbor (K-NN), and Support-Vector Machine (SVM).The approach was evaluated using a reference dataset based on Semantic Evaluation 2016 workshop (SemEval-2016: Task-5). Results show that the supervised learning approach outperforms related work evaluated using the same dataset. More precisely, evaluation results show that all classifiers in the proposed approach outperform the baseline approach, and the overall enhancement for the best performing classifier (SVM) is around 53% for T1, around 59% for T2, and around 19% in T3.
论文关键词:Aspect-based sentiment analysis,Supervised machine learning,Arabic reviews,Hotels’ reviews
论文评审过程:Received 30 October 2016, Revised 14 November 2017, Accepted 10 January 2018, Available online 17 January 2018, Version of Record 7 January 2019.
论文官网地址:https://doi.org/10.1016/j.ipm.2018.01.006