Feature-enriched matrix factorization for relation extraction

作者:

Highlights:

摘要

Relation extraction aims at finding meaningful relationships between two named entities from within unstructured textual content. In this paper, we define the problem of information extraction as a matrix completion problem where we employ the notion of universal schemas formed as a collection of patterns derived from open information extraction systems as well as additional features derived from grammatical clause patterns and statistical topic models. One of the challenges with earlier work that employ matrix completion methods is that such approaches require a sufficient number of observed relation instances to be able to make predictions. However, in practice there is often insufficient number of explicit evidence supporting each relation type that could be used within the matrix model. Hence, existing work suffer from a low recall. In our work, we extend the work in the state of the art by proposing novel ways of integrating two sets of features, i.e., topic models and grammatical clause structures, for alleviating the low recall problem. More specifically, we propose that it is possible to (1) employ grammatical clause information from textual sentences to serve as an implicit indication of relation type and argument similarity. The basis for this is that it is likely that similar relation types and arguments are observed within similar grammatical structures, and (2) benefit from statistical topic models to determine similarity between relation types and arguments. We employ statistical topic models to determine relation type and argument similarity based on their co-occurrence within the same topics. We have performed extensive experiments based on both gold standard and silver standard datasets. The experiments show that our approach has been able to address the low recall problem in existing methods, by showing an improvement of 21% on recall and 8% on f-measure over the state of the art baseline.

论文关键词:Open Information Extraction,Relation Extraction,Matrix Models,Matrix Factorization

论文评审过程:Received 18 April 2018, Revised 20 September 2018, Accepted 12 October 2018, Available online 8 January 2019, Version of Record 8 January 2019.

论文官网地址:https://doi.org/10.1016/j.ipm.2018.10.011