Deriving the sentiment polarity of term senses using dual-step context-aware in-gloss matching

作者:

Highlights:

摘要

Vital to the task of Sentiment Analysis (SA), or automatically mining sentiment expression from text, is a sentiment lexicon. This fundamental lexical resource comprises the smallest sentiment-carrying units of text, words, annotated for their sentiment properties, and aids in SA tasks on larger pieces of text. Unfortunately, digital dictionaries do not readily include information on the sentiment properties of their entries, and manually compiling sentiment lexicons is tedious in terms of annotator time and effort. This has resulted in the emergence of a large number of research works concentrated on automated sentiment lexicon generation. The dictionary-based approach involves leveraging digital dictionaries, while the corpus-based approach involves exploiting co-occurrence statistics embedded in text corpora. Although the former approach has been exhaustively investigated, the majority of works focus on terms. The few state-of-the-art models concentrated on the finer-grained term sense level remain to exhibit several prominent limitations, e.g., the proposed semantic relations algorithm retrieves only senses that are at a close proximity to the seed senses in the semantic network, thus prohibiting the retrieval of remote sentiment-carrying senses beyond the reach of the ‘radius’ defined by number of iterations of semantic relations expansion. The proposed model aims to overcome the issues inherent in dictionary-based sense-level sentiment lexicon generation models using: (1) null seed sets, and a morphological approach inspired by the Marking Theory in Linguistics to populate them automatically; (2) a dual-step context-aware gloss expansion algorithm that ‘mines’ human defined gloss information from a digital dictionary, ensuring senses overlooked by the semantic relations expansion algorithm are identified; and (3) a fully-unsupervised sentiment categorization algorithm on the basis of the Network Theory. The results demonstrate that context-aware in-gloss matching successfully retrieves senses beyond the reach of the semantic relations expansion algorithm used by prominent, well-known models. Evaluation of the proposed model to accurately assign senses with polarity demonstrates that it is on par with state-of-the-art models against the same gold standard benchmarks. The model has theoretical implications in future work to effectively exploit the readily-available human-defined gloss information in a digital dictionary, in the task of assigning polarity to term senses. Extrinsic evaluation in a real-world sentiment classification task on multiple publically-available varying-domain datasets demonstrates its practical implication and application in sentiment analysis, as well as in other related fields such as information science, opinion retrieval and computational linguistics.

论文关键词:Sentiment lexicon,Opinion lexicon,Sentiment lexicon generation,Sentiment analysis,Opinion mining

论文评审过程:Received 19 July 2019, Revised 12 April 2020, Accepted 18 April 2020, Available online 5 June 2020, Version of Record 5 June 2020.

论文官网地址:https://doi.org/10.1016/j.ipm.2020.102273