An entity-graph based reasoning method for fact verification
作者:
Highlights:
•
摘要
Fact verification aims to retrieve relevant evidence from a knowledge base, e.g., Wikipedia, to verify the given claims. Existing methods only consider the sentence-level semantics for evidence representations, which typically neglect the importance of fine-grained features in the evidence-related sentences. In addition, the interpretability of the reasoning process has not been well studied in the field of fact verification. To address such issues, we propose an entity-graph based reasoning method for fact verification abbreviated as RoEG, which generates the fine-grained features of evidence at the entity-level and models the human reasoning paths based on an entity graph. In detail, to capture the semantic relations of retrieved evidence, RoEG introduces the entities as nodes and constructs the edges in the graph based on three linking strategies. Then, RoEG utilizes a selection gate to constrain the information propagation in the sub-graph of relevant entities and applies a graph neural network to propagate the entity-features for reasoning. Finally, RoEG employs an attention aggregator to gather the information of entities for label prediction. Experimental results on a large-scale benchmark dataset FEVER demonstrate the effectiveness of our proposal by beating the competitive baselines in terms of label accuracy and FEVER Score. In particular, for a task of multiple-evidence fact verification, RoEG produces 5.48% and 4.35% improvements in terms of label accuracy and FEVER Score against the state-of-the-art baseline. In addition, RoEG shows a better performance when more entities are involved for fact verification.
论文关键词:Entity graph,Fact verification,Graph attention networks
论文评审过程:Received 14 September 2020, Revised 18 November 2020, Accepted 15 December 2020, Available online 7 January 2021, Version of Record 7 January 2021.
论文官网地址:https://doi.org/10.1016/j.ipm.2020.102472