Recent trends in hierarchic document clustering: A critical review
作者:
Highlights:
•
摘要
This article reviews recent research into the use of hierarchic agglomerative clustering methods for document retrieval. After an introduction to the calculation of interdocument similarities and to clustering methods that are appropriate for document clustering, the article discusses algorithms that can be used to allow the implementation of these methods on databases of nontrivial size. The validation of document hierarchies is described using tests based on the theory of random graphs and on empirical characteristics of document collections that are to be clustered. A range of search strategies is available for retrieval from document hierarchies and the results are presented of a series of research projects that have used these strategies to search the clusters resulting from several different types of hierarchic agglomerative clustering method. It is suggested that the complete linkage method is probably the most effective method in terms of retrieval performance; however, it is also difficult to implement in an efficient manner. Other applications of document clustering techniques are discussed briefly; experimental evidence suggests that nearest neighbor clusters, possibly represented as a network model, provide a reasonably efficient and effective means of including interdocument similarity information in document retrieval systems.
论文关键词:
论文评审过程:Accepted 26 January 1988, Available online 19 July 2002.
论文官网地址:https://doi.org/10.1016/0306-4573(88)90027-1