Mono-implicit Runge-Kutta schemes for the parallel solution of initial value ODEs
作者:
Highlights:
•
摘要
Among the numerical techniques commonly considered for the efficient solution of stiff initial value ordinary differential equations are the implicit Runge-Kutta (IRK) schemes. The calculation of the stages of the IRK method involves the solution of a nonlinear system of equations usually employing some variant of Newton's method. Since the costs of the linear algebra associated with the implementation of Newton's method generally dominate the overall cost of the computation, many subclasses of IRK schemes, such as diagonally implicit Runge-Kutta schemes, singly implicit Runge-Kutta schemes, and mono-implicit (MIRK) schemes, have been developed to attempt to reduce these costs. In this paper we are concerned with the design of MIRK schemes that are inherently parallel in that smaller systems of equations are apportioned to concurrent processors. This work builds on that of an earlier investigation in which a special subclass of the MIRK formulas were implemented in parallel. While suitable parallelism was achieved, the formulas were limited to some extent because they all had only stage order 1. This is of some concern since in the application of a Runge-Kutta method to a system of stiff ODEs the phenomenon of order reduction can arise; the IRK method can behave as if its order were only its stage order (or its stage order plus one), regardless of its classical order. The formulas derived in the current paper represent an improvement over the previous investigation in that the full class of MIRK formulas is considered and therefore it is possible to derive efficient, parallel formulas of orders 2, 3, and 4, having stage orders 2 or 3.
论文关键词:65L05,65Y05,Stiff ODEs,Runge-Kutta schemes,A-stability,L-stability,Parallel methods,Parabolic PDEs
论文评审过程:Received 12 November 1997, Revised 6 July 1998, Available online 9 April 1999.
论文官网地址:https://doi.org/10.1016/S0377-0427(98)00221-0