A stable elemental decomposition for dynamic process optimization
作者:
Highlights:
•
摘要
In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem (NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on finite elements, the DAE system is transformed into a nonlinear system. The resulting optimization problem, in which the element placement is fixed, is solved using a reduced space successive quadratic programming (rSQP) algorithm. The space is partitioned into range and null spaces. This partitioning is performed by choosing a pivot sequence for an LU factorization with partial pivoting which allows us to detect unstable modes in the DAE system. The system is stabilized without imposing new boundary conditions. The decomposition of the range space can be performed in a single step by exploiting the overall sparsity of the collocation matrix but not its almost block diagonal structure. In order to solve larger problems a new decomposition approach and a new method for constructing the quadratic programming (QP) subproblem are presented in this work. The decomposition of the collocation matrix is now performed element by element, thus reducing the storage requirements and the computational effort. Under this scheme, the unstable modes are considered in each element and a range-space move is constructed sequentially based on decomposition in each element. This new decomposition improves the efficiency of our previous approach and at the same time preserves its stability. The performance of the algorithm is tested on several examples. Finally, some future directions for research are discussed.
论文关键词:Dynamic optimization,Nonlinear programming,DAE stability
论文评审过程:Received 17 December 1998, Revised 1 June 1999, Available online 18 July 2000.
论文官网地址:https://doi.org/10.1016/S0377-0427(00)00302-2