Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems

作者:

Highlights:

摘要

This paper introduces several strategies to deal with pivot blocks in multi-level block incomplete LU factorization (BILUM) preconditioning techniques. These techniques are aimed at increasing the robustness and controlling the amount of fill-ins of BILUM for solving large sparse linear systems when large-size blocks are used to form block-independent set. Techniques proposed in this paper include double-dropping strategies, approximate singular-value decomposition, variable size blocks and use of an arrowhead block submatrix. We point out the advantages and disadvantages of these strategies and discuss their efficient implementations. Numerical experiments are conducted to show the usefulness of the new techniques in dealing with hard-to-solve problems arising from computational fluid dynamics. In addition, we discuss the relation between multi-level ILU preconditioning methods and algebraic multi-level methods.

论文关键词:65F10,65F50,65N55,65Y05,Incomplete LU factorization,Multi-level ILU preconditioner,Krylov subspace methods,Multi-elimination ILU factorization,Algebraic multigrid method

论文评审过程:Received 2 December 1998, Revised 17 September 1999, Available online 7 May 2001.

论文官网地址:https://doi.org/10.1016/S0377-0427(99)00388-X