A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale

作者:

Highlights:

摘要

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation is different from the traditional heat diffusion equation since a second-order derivative of temperature with respect to time and a third-order mixed derivative of temperature with respect to space and time are introduced. In this study, we develop a high-order compact finite-difference scheme for the heat transport equation at the microscale. It is shown by the discrete Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate.

论文关键词:65M06,65N12,Compact finite difference,Stability,Heat transport equation,Discrete Fourier analysis,Microscale

论文评审过程:Received 13 October 1999, Available online 20 June 2001.

论文官网地址:https://doi.org/10.1016/S0377-0427(00)00445-3