Review and complements on mixed-hybrid finite element methods for fluid flows

作者:

Highlights:

摘要

Mixed and hybrid finite element methods for the resolution of a wide range of linear and nonlinear boundary value problems (linear elasticity, Stokes problem, Navier–Stokes equations, Boussinesq equations, etc.) have known a great development in the last few years. These methods allow simultaneous computation of the original variable and its gradient, both of them being equally accurate. Moreover, they have local conservation properties (conservation of the mass and the momentum) as in the finite volume methods.The purpose of this paper is to give a review on some mixed finite elements developed recently for the resolution of Stokes and Navier–Stokes equations, and the linear elasticity problem. Further developments for a quasi-Newtonian flow obeying the power law are presented.

论文关键词:Mixed finite elements,Lagrange multipliers,Stokes problem,The rate deformation tensor

论文评审过程:Received 31 August 2000, Revised 5 June 2001, Available online 28 August 2001.

论文官网地址:https://doi.org/10.1016/S0377-0427(01)00520-9