An iterative back substitution algorithm for the solution of tridiagonal matrix systems with fringes

作者:

Highlights:

摘要

For tridiagonal matrix systems, a simple direct algorithm giving the solution exists, but in the most general case of tridiagonal matrix with fringes, the direct solving algorithms are more complicated. For big systems, direct methods are not well fitted and iterative algorithms are preferable. In this paper a relaxation type iterative algorithm is presented. It is an extension of the backward substitution method used for simple tridiagonal matrix systems. The performances show that this algorithm is a good compromise between a direct method and other iterative methods as block SOR. Its nature suggests its use as inner solver in the solution of problems derived by application of a decomposition domain method. A special emphasis is done on the programming aspect. The solving Fortran subroutines implementing the algorithm have been generated automatically from their specification by using a computer algebra system technique.

论文关键词:Tridiagonal matrix systems,Computer algebra systems

论文评审过程:Received 19 March 2003, Revised 8 September 2003, Available online 25 February 2004.

论文官网地址:https://doi.org/10.1016/j.cam.2003.11.004