Generalized Hyers–Ulam–Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C*-algebras

作者:

Highlights:

摘要

Assume that X is a left Banach module over a unital C*-algebra A. It is shown that almost every n-sesquilinear-quadratic mapping h:X×X×Xn→A is an n-sesquilinear-quadratic mapping when h(rx,y;z1,…,zn)=h(x,ry;z1,…,zn)=h(x,y;rz1,z2,…,zn)=⋯=h(x,y;z1,z2,…,rzn)=rh(x,y;z1,z2,…,zn)(r>0,r≠1) holds for all x,y,z1,…,zn∈X.Moreover, we prove the generalized Hyers–Ulam–Rassias stability of an n-sesquilinear-quadratic mapping on a left Banach module over a unital C*-algebra.

论文关键词:primary 39B52,47Jxx,46L05,Banach module over C*-algebra,n-sesquilinear-quadratic mapping,Stability,Functional equation,n-inner product space

论文评审过程:Received 2 December 2003, Revised 2 November 2004, Available online 15 December 2004.

论文官网地址:https://doi.org/10.1016/j.cam.2004.11.001