An asymptotical study of combinatorial optimization problems by means of statistical mechanics
作者:
Highlights:
•
摘要
The analogy between combinatorial optimization and statistical mechanics has proven to be a fruitful object of study. Simulated annealing, a metaheuristic for combinatorial optimization problems, is based on this analogy. In this paper we show how a statistical mechanics formalism can be utilized to analyze the asymptotic behavior of combinatorial optimization problems with sum objective function and provide an alternative proof for the following result: Under a certain combinatorial condition and some natural probabilistic assumptions on the coefficients of the problem, the ratio between the optimal solution and an arbitrary feasible solution tends to one almost surely, as the size of the problem tends to infinity, so that the problem of optimization becomes trivial in some sense. Whereas this result can also be proven by purely probabilistic techniques, the above approach allows one to understand why the assumed combinatorial condition is essential for such a type of asymptotic behavior.
论文关键词:90C27,82B30,60F05,Combinatorial problem,Asymptotic behavior,Probabilistic analysis,Statistical mechanics
论文评审过程:Received 11 October 2004, Revised 17 October 2004, Available online 13 May 2005.
论文官网地址:https://doi.org/10.1016/j.cam.2005.03.068