A generalization of Peaceman–Rachford fractional step method
作者:
Highlights:
•
摘要
In this paper we develop a set of time integrators of type fractional step Runge–Kutta methods which generalize the time integrator involved in the classical Peaceman–Rachford scheme. Combining a time semidiscretization of this type with a standard spatial discretization, we obtain a totally discrete algorithm capable of discretizing efficiently a general parabolic problem if suitable splittings of the elliptic operator are considered. We prove that our proposal is second order consistent and stable even for an operator splitting in m terms which do not necessarily commute. Finally, we illustrate the theoretical results with various applications such as alternating directions or evolutionary domain decomposition.
论文关键词:Fractional steps,Alternating direction implicit methods,Peaceman and Rachford,Domain decomposition
论文评审过程:Received 10 October 2004, Available online 26 July 2005.
论文官网地址:https://doi.org/10.1016/j.cam.2005.05.020