A Legendre spectral element method for eigenvalues in hydrodynamic stability
作者:
Highlights:
•
摘要
A Legendre polynomial-based spectral technique is developed to be applicable to solving eigenvalue problems which arise in linear and nonlinear stability questions in porous media, and other areas of Continuum Mechanics. The matrices produced in the corresponding generalised eigenvalue problem are sparse, reducing the computational and storage costs, where the superimposition of boundary conditions is not needed due to the structure of the method. Several eigenvalue problems are solved using both the Legendre polynomial-based and Chebyshev tau techniques. In each example, the Legendre polynomial-based spectral technique converges to the required accuracy utilising less polynomials than the Chebyshev tau method, and with much greater computational efficiency.
论文关键词:Spectral methods,Porous media,Sparse matrices,Hydrodynamic stability
论文评审过程:Received 1 May 2004, Available online 10 August 2005.
论文官网地址:https://doi.org/10.1016/j.cam.2005.06.011