Separable nonlinear least squares fitting with linear bound constraints and its application in magnetic resonance spectroscopy data quantification
作者:
Highlights:
•
摘要
An application in magnetic resonance spectroscopy quantification models a signal as a linear combination of nonlinear functions. It leads to a separable nonlinear least squares fitting problem, with linear bound constraints on some variables. The variable projection (VARPRO) technique can be applied to this problem, but needs to be adapted in several respects. If only the nonlinear variables are subject to constraints, then the Levenberg–Marquardt minimization algorithm that is classically used by the VARPRO method should be replaced with a version that can incorporate those constraints. If some of the linear variables are also constrained, then they cannot be projected out via a closed-form expression as is the case for the classical VARPRO technique. We show how quadratic programming problems can be solved instead, and we provide details on efficient function and approximate Jacobian evaluations for the inequality constrained VARPRO method.
论文关键词:90C30,92C55,65F99,Magnetic resonance spectroscopy data quantification,Nonlinear least squares,Variable projection
论文评审过程:Received 2 December 2005, Available online 19 May 2006.
论文官网地址:https://doi.org/10.1016/j.cam.2006.03.025