Spectral clustering and its use in bioinformatics
作者:
Highlights:
•
摘要
We formulate a discrete optimization problem that leads to a simple and informative derivation of a widely used class of spectral clustering algorithms. Regarding the algorithms as attempting to bi-partition a weighted graph with N vertices, our derivation indicates that they are inherently tuned to tolerate all partitions into two non-empty sets, independently of the cardinality of the two sets. This approach also helps to explain the difference in behaviour observed between methods based on the unnormalized and normalized graph Laplacian. We also give a direct explanation of why Laplacian eigenvectors beyond the Fiedler vector may contain fine-detail information of relevance to clustering. We show numerical results on synthetic data to support the analysis. Further, we provide examples where normalized and unnormalized spectral clustering is applied to microarray data—here the graph summarizes similarity of gene activity across different tissue samples, and accurate clustering of samples is a key task in bioinformatics.
论文关键词:65F15,92C37,Balancing threshold,Gene expression,Rayleigh–Ritz Theorem,Fiedler vector,Graph Laplacian,Random graph,Maximum likelihood,Microarray,Partitioning,Scaling
论文评审过程:Received 15 July 2005, Revised 10 September 2005, Available online 2 June 2006.
论文官网地址:https://doi.org/10.1016/j.cam.2006.04.026