Asymptotic properties of some triangulations of the sphere

作者:

Highlights:

摘要

In this paper we analyse a method for triangulating the sphere originally proposed by Baumgardner and Frederickson in 1985. The method is essentially a refinement procedure for arbitrary spherical triangles that fit into a hemisphere. Refinement is carried out by dividing each triangle into four by introducing the midpoints of the edges as new vertices and connecting them in the usual ‘red’ way. We show that this process can be described by a sequence of piecewise smooth mappings from a reference triangle onto the spherical triangle. We then prove that the whole sequence of mappings is uniformly bi-Lipschitz and converges uniformly to a non-smooth parameterization of the spherical triangle, recovering the Baumgardner and Frederickson spherical barycentric coordinates. We also prove that the sequence of triangulations is quasi-uniform, that is, areas of triangles and lengths of the edges are roughly the same at each refinement level. Some numerical experiments confirm the theoretical results.

论文关键词:65N50,65D17,Spherical triangulations,Quasi-uniform triangulations

论文评审过程:Received 22 February 2006, Revised 30 October 2006, Available online 3 January 2007.

论文官网地址:https://doi.org/10.1016/j.cam.2006.11.012