A derivative-free nonmonotone line-search technique for unconstrained optimization

作者:

Highlights:

摘要

A tolerant derivative–free nonmonotone line-search technique is proposed and analyzed. Several consecutive increases in the objective function and also nondescent directions are admitted for unconstrained minimization. To exemplify the power of this new line search we describe a direct search algorithm in which the directions are chosen randomly. The convergence properties of this random method rely exclusively on the line-search technique. We present numerical experiments, to illustrate the advantages of using a derivative-free nonmonotone globalization strategy, with approximated-gradient type methods and also with the inverse SR1 update that could produce nondescent directions. In all cases we use a local variation finite differences approximation to the gradient.

论文关键词:Unconstrained minimization,Derivative-free methods,Nonmonotone line-search schemes,SR1 updates

论文评审过程:Received 31 October 2006, Revised 13 June 2007, Available online 19 July 2007.

论文官网地址:https://doi.org/10.1016/j.cam.2007.07.017