A regularization semismooth Newton method based on the generalized Fischer–Burmeister function for P0-NCPs

作者:

Highlights:

摘要

We consider a regularization method for nonlinear complementarity problems with F being a P0-function which replaces the original problem with a sequence of the regularized complementarity problems. In this paper, this sequence of regularized complementarity problems are solved approximately by applying the generalized Newton method for an equivalent augmented system of equations, constructed by the generalized Fischer–Burmeister (FB) NCP-functions φp with p>1. We test the performance of the regularization semismooth Newton method based on the family of NCP-functions through solving all test problems from MCPLIB. Numerical experiments indicate that the method associated with a smaller p, for example p∈[1.1,2], usually has better numerical performance, and the generalized FB functions φp with p∈[1.1,2) can be used as the substitutions for the FB function φ2.

论文关键词:Nonlinear complementarity problem (NCP),Generalized Fischer–Burmeister function,P0-function,Semismooth Newton method

论文评审过程:Received 1 June 2007, Revised 29 August 2007, Available online 7 September 2007.

论文官网地址:https://doi.org/10.1016/j.cam.2007.08.020