On a class of Newton-like methods for solving nonlinear equations
作者:
Highlights:
•
摘要
We provide a semilocal convergence analysis for a certain class of Newton-like methods considered also in [I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374–397; I.K. Argyros, Computational theory of iterative methods, in: C.K. Chui, L. Wuytack (Eds.), Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co, New York, USA, 2007; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971], in order to approximate a locally unique solution of an equation in a Banach space.Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71–84], we provide an analysis with the following advantages over the work in [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71–84] which improved the works in [W.E. Bosarge, P.L. Falb, A multipoint method of third order, J. Optimiz. Theory Appl. 4 (1969) 156–166; W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems, Numer. Math. 14 (1970) 264–286; J.E. Dennis, On the Kantorovich hypothesis for Newton’s method, SIAM J. Numer. Anal. 6 (3) (1969) 493–507; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971; H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fü r verschä rfte Newton-Verfahrem, in: ISNM, vol. 28, Birkhaü ser Verlag, Basel and Stuttgart, 1975, pp. 53–69; P. Laasonen, Ein überquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969) 1–10; F.A. Potra, On a modified secant method, L’analyse numérique et la theorie de l’approximation 8 (2) (1979) 203–214; F.A. Potra, An application of the induction method of V. Pták to the study of Regula Falsi, Aplikace Matematiky 26 (1981) 111–120; F.A. Potra, On the convergence of a class of Newton-like methods, in: Iterative Solution of Nonlinear Systems of Equations, in: Lecture Notes in Mathematics, vol. 953, Springer-Verlag, New York, 1982; F.A. Potra, V. Pták, Nondiscrete induction and double step secant method, Math. Scand. 46 (1980) 236–250; F.A. Potra, V. Pták, On a class of modified Newton processes, Numer. Funct. Anal. Optim. 2 (1) (1980) 107–120; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71–84; J.W. Schmidt, Untere Fehlerschranken für Regula-Falsi Verfahren, Period. Math. Hungar. 9 (3) (1978) 241–247; J.W. Schmidt, H. Schwetlick, Ableitungsfreie Verfhren mit höherer Konvergenzgeschwindifkeit, Computing 3 (1968) 215–226; J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964; M.A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978) 153–174]: larger convergence domain and weaker sufficient convergence conditions. Numerical examples further validating the results are also provided.
论文关键词:65K10,65G99,65J99,49M15,49J53,47J20,47H04,Newton-like methods,Banach space,Fréchet-derivative,Divided difference,Convergence domain,Newton’s method,Secant method,Nonlinear integral equation of the Chandrasekhar type
论文评审过程:Received 14 November 2007, Revised 14 August 2008, Available online 2 September 2008.
论文官网地址:https://doi.org/10.1016/j.cam.2008.08.042