Error estimates of triangular finite elements under a weak angle condition

作者:

Highlights:

摘要

In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier–Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble–Hilbert lemma.

论文关键词:65N15,Interpolation error estimates,Bramble–Hilbert lemma,Maximal angle condition

论文评审过程:Received 11 February 2008, Revised 4 November 2008, Available online 19 November 2008.

论文官网地址:https://doi.org/10.1016/j.cam.2008.11.008