Finite element methods with numerical quadrature for elliptic problems with smooth interfaces
作者:
Highlights:
•
摘要
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175–202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.
论文关键词:65N15,65N20,Elliptic equation,Finite element method,Interface,Optimal error estimates,Quadrature
论文评审过程:Received 16 October 2008, Revised 30 March 2009, Available online 13 January 2010.
论文官网地址:https://doi.org/10.1016/j.cam.2009.12.052