Reflection and transmission by a slab with randomly distributed isotropic point scatterers

作者:

Highlights:

摘要

The problem of how a wave propagates in an infinite medium filled with scatterers has revealed the notion of an effective medium: the mean wave propagates as in an homogeneous medium with complex index. Is this notion of an effective medium still valid when the scatterers are bounded in space? The problem is treated here for isotropic point scatterers. It is shown that (i) the waves propagate inside the slab with an effective wavenumber K being the same as that in an infinite medium, (ii) the reflection and transmission coefficients of the slab mainly behave as R≃(1−eiKL)(k−K)/2k and T≃eiKL at leading order, (iii) the reflection and transmission coefficients of a single interface are related to R and T with the usual law of optics and (iv) the boundary conditions to be applied at the interface are the continuity of the field and its first derivative for isotropic scatterers. Finally, numerical experiments in one dimension show satisfactory agreement with the presented theory.

论文关键词:Multiple scattering,Random media,Reflection & transmission

论文评审过程:Received 3 December 2007, Revised 12 May 2008, Available online 12 August 2009.

论文官网地址:https://doi.org/10.1016/j.cam.2009.08.035