Limit analysis decomposition and finite element mixed method
作者:
Highlights:
•
摘要
This paper proposes an original decomposition approach to the upper bound method of limit analysis. It is based on a mixed finite element approach and on a convex interior point solver, using linear or quadratic discontinuous velocity fields. Presented in plane strain, this method appears to be rapidly convergent, as verified in the Tresca compressed bar problem in the linear velocity case. Then, using discontinuous quadratic velocity fields, the method is applied to the celebrated problem of the stability factor of a Tresca vertical slope: the upper bound is lowered to 3.7776–value to be compared to the best published lower bound 3.7752–by succeeding in solving a nonlinear optimization problem with millions of variables and constraints.
论文关键词:Porous material,Convex optimization,Decomposition,Limit analysis,Finite element method,Mixed approach
论文评审过程:Received 8 September 2008, Revised 29 January 2009, Available online 18 August 2009.
论文官网地址:https://doi.org/10.1016/j.cam.2009.08.074