A numerical solution of the constrained weighted energy problem

作者:

Highlights:

摘要

A numerical algorithm is presented to solve the constrained weighted energy problem from potential theory. As one of the possible applications of this algorithm, we study the convergence properties of the rational Lanczos iteration method for the symmetric eigenvalue problem. The constrained weighted energy problem characterizes the region containing those eigenvalues that are well approximated by the Ritz values. The region depends on the distribution of the eigenvalues, on the distribution of the poles, and on the ratio between the size of the matrix and the number of iterations. Our algorithm gives the possibility of finding the boundary of this region in an effective way.We give numerical examples for different distributions of poles and eigenvalues and compare the results of our algorithm with the convergence behavior of the explicitly performed rational Lanczos algorithm.

论文关键词:Potential theory,Constrained weighted energy problem,Krylov subspace iterations,Ritz values,Eigenvalue distribution,Rational Lanczos algorithm

论文评审过程:Received 8 June 2009, Revised 19 October 2009, Available online 2 December 2009.

论文官网地址:https://doi.org/10.1016/j.cam.2009.11.060