A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces
作者:
Highlights:
•
摘要
In this paper, we prove strong convergence theorems by the hybrid method for a family of hemi-relatively nonexpansive mappings in a Banach space. Our results improve and extend the corresponding results given by Qin et al. [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Haiyun Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-ϕ-nonexpansive mappings, Appl. Math. Lett. 22 (2009) 1051–1055], and at the same time, our iteration algorithm is different from the Kimura and Takahashi algorithm, which is a modified Mann-type iteration algorithm [Yasunori Kimura, Wataru Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in Banach space, J. Math. Anal. Appl. 357 (2009) 356–363]. In addition, we succeed in applying our algorithm to systems of equilibrium problems which contain a family of equilibrium problems.
论文关键词:47H05,47H09,47H10,Hemi-relatively nonexpansive mappings,Hybrid algorithm,Systems of equilibrium problems,Fixed point,Banach space
论文评审过程:Received 20 June 2009, Revised 4 December 2009, Available online 30 October 2010.
论文官网地址:https://doi.org/10.1016/j.cam.2010.10.036