The spectrum of eigenparameter-dependent discrete Sturm–Liouville equations
作者:
Highlights:
•
摘要
Let us consider the boundary value problem (BVP) for the discrete Sturm–Liouville equation (0.1)an−1yn−1+bnyn+anyn+1=λyn,n∈N,(0.2)(γ0+γ1λ)y1+(β0+β1λ)y0=0, where (an) and (bn),n∈N are complex sequences, γi,βi∈C,i=0,1, and λ is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if supn∈N[exp(εnδ)(|1−an|+|bn|)]<∞, for some ε>0 and 12≤δ≤1.
论文关键词:39A70,47A10,47A75,Discrete equations,Spectral analysis,Eigenvalues,Spectral singularities
论文评审过程:Received 6 November 2009, Revised 16 December 2009, Available online 11 January 2010.
论文官网地址:https://doi.org/10.1016/j.cam.2009.12.037