Multivariate numerical differentiation
作者:
Highlights:
•
摘要
We present an innovative method for multivariate numerical differentiation i.e. the estimation of partial derivatives of multidimensional noisy signals. Starting from a local model of the signal consisting of a truncated Taylor expansion, we express, through adequate differential algebraic manipulations, the desired partial derivative as a function of iterated integrals of the noisy signal. Iterated integrals provide noise filtering. The presented method leads to a family of estimators for each partial derivative of any order. We present a detailed study of some structural properties given in terms of recurrence relations between elements of a same family. These properties are next used to study the performance of the estimators. We show that some differential algebraic manipulations corresponding to a particular family of estimators lead implicitly to an orthogonal projection of the desired derivative in a Jacobi polynomial basis functions, yielding an interpretation in terms of the popular least squares. This interpretation allows one to (1) explain the presence of a spatial delay inherent to the estimators and (2) derive an explicit formula for the delay. We also show how one can devise, by a proper combination of different elementary estimators of a given order derivative, an estimator giving a delay of any prescribed value. The simulation results show that delay-free estimators are sensitive to noise. Robustness with respect to noise can be highly increased by utilizing voluntary-delayed estimators. A numerical implementation scheme is given in the form of finite impulse response digital filters. The effectiveness of our derivative estimators is attested by several numerical simulations.
论文关键词:Numerical differentiation,Multivariable signals,Orthogonal polynomials,Inverse problems,Least squares,Finite impulse response filters
论文评审过程:Received 4 February 2011, Revised 22 July 2011, Available online 31 July 2011.
论文官网地址:https://doi.org/10.1016/j.cam.2011.07.031