Some projection methods with the BB step sizes for variational inequalities

作者:

Highlights:

摘要

Since the appearance of the Barzilai–Borwein (BB) step sizes strategy for unconstrained optimization problems, it received more and more attention of the researchers. It was applied in various fields of the nonlinear optimization problems and recently was also extended to optimization problems with bound constraints. In this paper, we further extend the BB step sizes to more general variational inequality (VI) problems, i.e., we adopt them in projection methods. Under the condition that the underlying mapping of the VI problem is strongly monotone and Lipschitz continuous and the modulus of strong monotonicity and the Lipschitz constant satisfy some further conditions, we establish the global convergence of the projection methods with BB step sizes. A series of numerical examples are presented, which demonstrate that the proposed methods are convergent under mild conditions, and are more efficient than some classical projection-like methods.

论文关键词:BB step size,Variational inequalities,Projection methods,Complementarity problems,Image deblurring problems,Nash equilibrium problems

论文评审过程:Received 25 June 2009, Revised 28 November 2011, Available online 30 December 2011.

论文官网地址:https://doi.org/10.1016/j.cam.2011.12.017