Conservative finite difference schemes for the generalized Zakharov–Kuznetsov equations
作者:
Highlights:
•
摘要
This paper is concerned with the construction of conservative finite difference schemes by means of discrete variational method for the generalized Zakharov–Kuznetsov equations and the numerical solvability of the two-dimensional nonlinear wave equations. A finite difference scheme is proposed such that mass and energy conservation laws associated with the generalized Zakharov–Kuznetsov equations hold. Our arguments are based on the procedure that D. Furihata has recently developed for real-valued nonlinear partial differential equations. Numerical results are given to confirm the accuracy as well as validity of the numerical solutions and then exhibit remarkable nonlinear phenomena of the interaction and behavior of pulse wave solutions.
论文关键词:Generalized Zakharov–Kuznetsov equation,Discrete variational method,Conservative finite difference scheme,Division and collision of nonlinear waves
论文评审过程:Available online 4 May 2011.
论文官网地址:https://doi.org/10.1016/j.cam.2011.04.010