Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients

作者:

Highlights:

摘要

In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic heterogeneous coefficients by the finite element method assuming tensor product basis functions. Specifically, we adopt the compound iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace method that is used to solve the preconditioned linear system. An efficient algorithm to perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We exploit the Kronecker product structure in the matrices, inherited from the tensor product basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to reduce the number of Krylov subspace iterations, we incorporate partially the coefficient information into the preconditioner by exploiting the local support property of the finite element basis functions. Numerical results demonstrated the efficiency and quality of the proposed preconditioner.

论文关键词:Alternating Direction Implicit,Kronecker product,Finite element method,Tensor product basis functions,Preconditioning,Compound iteration

论文评审过程:Received 13 December 2013, Revised 26 May 2014, Available online 24 June 2014.

论文官网地址:https://doi.org/10.1016/j.cam.2014.06.021