Modeling probability densities with sums of exponentials via polynomial approximation

作者:

Highlights:

摘要

We propose a method for optimization with semi-infinite constraints that involve a linear combination of functions, focusing on shape-constrained optimization with exponential functions. Each function is lower and upper bounded on sub-intervals by low-degree polynomials. Thus, the constraints can be approximated with polynomial inequalities that can be implemented with linear matrix inequalities. Convexity is preserved, but the problem has now a finite number of constraints. We show how to take advantage of the properties of the exponential function in order to build quickly accurate approximations. The problem used for illustration is the least-squares fitting of a positive sum of exponentials to an empirical probability density function. When the exponents are given, the problem is convex, but we also give a procedure for optimizing the exponents. Several examples show that the method is flexible, accurate and gives better results than other methods for the investigated problems.

论文关键词:Optimization,Density fitting,Semi-infinite programming,Sum of exponentials,Polynomial approximation

论文评审过程:Received 27 March 2015, Revised 20 July 2015, Available online 30 July 2015, Version of Record 13 August 2015.

论文官网地址:https://doi.org/10.1016/j.cam.2015.07.032