A high order finite element scheme for pricing options under regime switching jump diffusion processes

作者:

Highlights:

摘要

This paper considers the numerical pricing of European, American and Butterfly options whose asset price dynamics follow the regime switching jump diffusion process. In an incomplete market structure and using the no-arbitrage pricing principle, the option pricing problem under the jump modulated regime switching process is formulated as a set of coupled partial integro-differential equations describing different states of a Markov chain. We develop efficient numerical algorithms to approximate the spatial terms of the option pricing equations using linear and quadratic basis polynomial approximations and solve the resulting initial value problem using exponential time integration. Various numerical examples are given to demonstrate the superiority of our computational scheme with higher level of accuracy and faster convergence compared to existing methods for pricing options under the regime switching model.

论文关键词:European and American option,Regime switching model,Finite element method,Exponential time integration

论文评审过程:Received 30 January 2015, Revised 1 November 2015, Available online 2 January 2016, Version of Record 15 January 2016.

论文官网地址:https://doi.org/10.1016/j.cam.2015.12.019